

Human Exploration Architectures and Perspectives

Doug Cooke
Manager, Advanced Development Office
NASA/JSC
11/6/01

What are the Often Stated Questions?

Humans vs. Robots?

- · Humans are essential in the use of robots
 - Issue of proximity
 - Degree of control, autonomy, interaction
- Relative Performance -

Robotic Missions

- Robots can be deployed in hazardous environments before committing humans
- Robotic missions are smaller bite-sized missions with smaller funding commitments
- Because they are smaller scale missions, science and its rate of return is limited.
 May take decades to obtain desired science (Mars)

Human Missions

- Scale of missions inherently larger/ more costly
- More complete range of observations/measurements possible on a mission
- In-situ investigations and human interaction closer to what is possible in the laboratory
- Ability to intercede in hardware/software problems and failures
- Greater flexibility to react to the totally unexpected and changing objectives
- The question is partially institutional- Human Space Flight vs. Space Science missions

What are the Often Stated Questions?

Humans and robots using the best capabilities of each?

- As before, we already try to do this in current robotic and human missions
- The usual progression in this discussion- humans and robots working together in-situ (planetary surface example)
 - Leads to visions of awkward relationships between people debilitated by their space suits and current designs for remotely operated robots
 - Without significant advancements, potentially leads to humans and robots less capable together than if they went their own ways
- With current views of capabilities, possibilities have been described as-
 - Tele-operated robots with humans in close proximity
 - Semi-autonomous robots scout for humans- rovers/ airborne reconnaissance
 - Robots explore the most hazardous terrain for safety purposes
 - Humans go EVA for detailed examination of prepared sites, scout for additional robot exploration
 - Robot assistants tag along to help out and reduce burdens of EVA
 - These roles and interactions can all be valid

Characteristics (partial list)

Humans

- · Complex thought processes
- Lifetime of experiences and learned knowledge is accessed instantaneously for immediate response to rapidly changing situations
- Complex computer / motor capabilities
 - Learned motor skills not requiring conscious thought
 - · eye-hand coordination
 - · balance- walking and talking/ chewing gum
- · Abstract prediction loosely based on experience
- Decision making based on other than facts (loyalty, humor, emotion, desires, fear for survival, etc.)
- · Acute skills of observation and interpretation
- Imagination, strategic thinking, ability to set or change priorities
- · Intuitive problem solving

Characteristics (partial list)

Machines

- · Programmed, logical response
- · Increasing automated reasoning
- Parallel processing
- Designed in strength- can easily surpass / augment human strength
- · Detailed, accurate, massive computation capabilities
- · Precise, quantifiable measurements
- · Exactly repetitive computational and mechanical actions
- · Stored coordinates for exact locations
- Mechanical capabilities- fluid control, filtering, power generation; other system functions

Character of Current Operations

Human missions

- Teams of people on the ground to assist astronauts
 - Monitor systems, oversee mission objectives and progress, mission decisions
 - Up link and communicate instructions and commands for normal operation of spacecraft, systems and experiments
 - Work with flight crews to solve onboard problems
 - Provide training
- Significant workload for astronauts to maintain complex systems and spacecraft
- Extra Vehicular Activity
 - People debilitated by suits
 - Reduced mobility, dexterity, strength
 - Injuries to hands from gloves
 - Kept alive and allow external work to be done using brains and motor skills

Character of Current Operations

Robotic Spacecraft

- · Team of people on the ground
 - Monitor systems, oversee mission objectives and progress, mission decisions
 - Up link commands for normal operation of spacecraft, systems and experiments
 - Mars surface example; As much as 40 minutes for round trip communication
 - Send commands for next operation
 - · Receive latest onboard information and response to commands
 - · Analyze next move
 - Send next set of commands

Observations

- For both human and robotic missions, more autonomy in machines/robots are needed to reduce the necessary degree of human interaction
 - Emerging computer-machine intelligence and problem solving capability
 - More complete and accessible onboard information
 - Reduce ground support / save money
- · More productive questions might be:
 - How do we apply the best state of technology to get the most from our machine, robot, computational, and human capabilities?
 - How do we develop the most effective interfaces between people and machines
 - Ultimately, how do we augment/ integrate human performance with machines to maximize overall mission performance, flexibility, and achievement?

Addressing the Interaction Between Humans and Machines

- Characterize and model the human being as a complete system of computational ability, sensors and effectors
 - Sensors- touch, sight, hearing, taste, total body system of feel, pain, temperature sensors
- Develop and <u>apply</u> technologies to maximize machine autonomy and physical capability
- · Define mission functions in detail
- Identify an integrated human/machine capability that can be employed to maximize performance of the functions
 - Develop the most effective interfaces, considering all possibilities

This should culminate in:

Augmentation of humans through complete integration with advanced machines, combining capabilities to to achieve mission performance levels that far surpass the best performance of each.

An Example, Putting this to Work-EVA Example

Objective- Astronaut is more capable than he is w/o EVA equipment- Achieve maximum mission performance

- · Protected in a suit:
 - Mechanical or inflatable pressure?
 - Light weight systems- materials, nano/mems
 - Built in advanced thermal, radiation protection
 - Outer skin sloughs or peels off to remove dust
- Full computational capability
 - Interaction w/o keyboards: Voice, direct brain communication?
 - HUD, video to retina?
 - All possible mission data, CAD views, etc. readily accessible
- Augmented sensors, strength/dexterity
 - Synthetic muscles, actuators incorporated in suit
 - Full, augmented sensory input
 - multi-spectral enhanced vision
 - Built in inflatable splints for injured limbs
 - Ability to medicate
- Communication of experiences, data and discoveries
 - Example: Retinal sensors- People on earth share discoveries through the astronauts' eyes- ability to instantly recall what was seen

